Use of USGS National Seismic Hazard Mapping Program Products in USACE Dam and Levee Safety Programs and USACE Civil Works Projects

ATC – USGS NSHMP Users Workshop September 21, 2015

Keith Kelson, Tom North, Vlad Perlea, Scott Shewbridge

Workshop Goals

- Elicit feedback from NSHMP users
- Provide a forum for EQ engineering community to transfer seismic hazard results into:
 - Engineering practice
 - Seismic risk analysis
 - ► Public policy
- Make practical recommendations to the USGS NSHMP

Presentation Outline

- Overview of USACE Risk-informed Decision
 Framework
- How does the USACE use NSHMP products?
 - Seismic Hazard Nationwide Screening
 - Semi-Quantitative Risk Assessments
 - Issue Evaluation Studies / Site-Specific PSHA
 - Induced Seismicity Considerations
- USACE Wish List for future NSHMP products

BUILDING STRONG_®

USACE Tolerable Risk Guidelines

USACE Risk-Informed Decision Making

Information Needed

- Risk Estimate
- Estimated Range of Uncertainty (and Confidence)
- Case to Support Risk Estimate
- Recommended Course of Action

Strategy

 Use risk estimate and Tolerable Risk Guidelines to develop rational recommended actions

Overall Goal: Portfolio Risk Reduction

Decrease Probability of Failure

- Mitigation schemes

 (i.e., berms, component
 replacements, cutoff walls)
- Intervention (dams)
- Flood fighting (levees)

Decrease Potential Loss of Life

- Improved evacuation plans
- Improved warning systems
- Revised land use

Screening-level Seismic Hazard Classes

BUILDING STRONG®

10

NSHMP Hazard Curve and PGA

Chittenden Lock and Dam, Seattle: PGA (g)

NSHMP Hazard Curve and PGA

Newburgh Lock and Dam, Evansville, IL: PGA (g)

BUILDING STRONG

Annual Frequency of Exceedence

Preliminary Seismic Screening

- Limited technical effort; readily available data
 NSHMP seismic hazard mapping
 - 2475-yr and 9975-yr PGA
 - High, Moderate, Low qualitative hazard classes

► Geotechnical site soil classes, estimated by:

- Regional seismic velocity data (Vs30 est.)
- General geologic/geomorphic interpretation
- Adjusted qualitative hazard classes
 - High, Mod-High, Moderate, Low-Mod, Low

Screening-level Seismic Hazard Classes

Seismic Analyses for Individual Dams and Levees

- Semi-Quantitative Risk Assessments
 - Dam Periodic Assessments (10-yr)
 - Levee Screening Tool
- Initial Evaluation Study
- Dam Safety Modification Study
- Preliminary Engineering and Design

Semi-Quantitative Risk Assessments

Uniform Hazard Spectra

http://geohazards.usgs.gov/hazardtool/application.php

USGS Home

Seismic Source Deaggregation

GMT 2015 Lil 23 19:18:14 Distance (R), magnitude (M), epsilon (E0,E) deaggregation for a site on rock with average vs= 760. m/s top 30m. USGS CGHT PSHA2006 UP DATE. Bins with 10.05% contrib. ontified

19

Deaggregation and Conditional Mean Spectra

20

CMT 2015.Jul 12 14:0057 Distance (iii), megnitude (M), epsilon (ID,E) deeggregation for a site on rock with average vso 360.mis top 30m. USGS COHT PEHA2008 UP DATE. Bins with 110.07% contribution to a site on rock with average vso 360.mis top 30m. USGS COHT PEHA2008 UP DATE.

BUILDING STRONG

Site-specific PSHA using USGS (2014) models

ERDC/USGS PSHA PEAK GROUND ACCELERATION (PGA)

ERDC/USGS PSHA 1.0s SPECTRAL ACCELERATION (1.0s SA)

Areas of Induced Seismicity: Excluded from USGS NSHMP

Qualitative Risk Analysis

Figure 4.18. SQRA Risk Matrix for PFM 5: Injection (Induced Seismicity)

Induced Seismicity (Injection) unknowns

Figure 4.15a. Because naturally occurring earthquakes usually occur at depths that are greater than EQs that are induced, the energy for smaller natural events (< M4) is usually dissipated before shaking can be felt at the ground surface. For a naturally occurring EQ having a magnitude of 5 (M5), the shaking can occur at the ground surface within a radius of approximately 15km (9 miles).

Injection

- Rate
- Volume

(short term, cumulative)

Earthquakes

- Mmax
- Stress Drop
- Depth/Distance (specific GMPEs?)

USACE Wish List (example)

